Telegram Group & Telegram Channel
Вы можете коротко рассказать, как онлайн-кинотеатры подбирают нам кино на вечер?

Онлайн-кинотеатры используют рекомендательные системы для подбора фильмов на основе предпочтений пользователей. Существует три основных типа рекомендательных систем:

▪️Фильтрация по популярности.
В такой системе рекомендуются фильмы с высоким рейтингом, без учета индивидуальных предпочтений.

▪️Фильтрация на основе содержания.
Система анализирует фильмы, которые пользователь смотрел ранее, и предлагает похожие фильмы (например, по жанру или актерам).

▪️Коллаборативная фильтрация.
Система находит пользователей с похожими вкусами и рекомендует фильмы, которые понравились им. Существует два вида коллаборативной фильтрации:
▫️User-based — рекомендации на основе предпочтений похожих пользователей.
▫️Item-based — рекомендации на основе сходства фильмов. Сходство определяется на базе предпочтений всех пользователей, которые оставили свои оценки.

Для коллаборативной фильтрации часто используется алгоритм k-ближайших соседей (KNN) для определения сходства между фильмами или пользователями.

🔹Пример работы системы:

▪️Создаётся матрица предпочтений пользователей и фильмов.
▪️Используется алгоритм KNN для нахождения ближайших соседей.
▪️Подбираются фильмы с наибольшим сходством с уже просмотренными фильмами.

Так, если вы посмотрели фильм «Матрица», система может порекомендовать другие фильмы с Киану Ривзом или в жанре научной фантастики.

#машинное_обучение
🔥9



tg-me.com/ds_interview_lib/452
Create:
Last Update:

Вы можете коротко рассказать, как онлайн-кинотеатры подбирают нам кино на вечер?

Онлайн-кинотеатры используют рекомендательные системы для подбора фильмов на основе предпочтений пользователей. Существует три основных типа рекомендательных систем:

▪️Фильтрация по популярности.
В такой системе рекомендуются фильмы с высоким рейтингом, без учета индивидуальных предпочтений.

▪️Фильтрация на основе содержания.
Система анализирует фильмы, которые пользователь смотрел ранее, и предлагает похожие фильмы (например, по жанру или актерам).

▪️Коллаборативная фильтрация.
Система находит пользователей с похожими вкусами и рекомендует фильмы, которые понравились им. Существует два вида коллаборативной фильтрации:
▫️User-based — рекомендации на основе предпочтений похожих пользователей.
▫️Item-based — рекомендации на основе сходства фильмов. Сходство определяется на базе предпочтений всех пользователей, которые оставили свои оценки.

Для коллаборативной фильтрации часто используется алгоритм k-ближайших соседей (KNN) для определения сходства между фильмами или пользователями.

🔹Пример работы системы:

▪️Создаётся матрица предпочтений пользователей и фильмов.
▪️Используется алгоритм KNN для нахождения ближайших соседей.
▪️Подбираются фильмы с наибольшим сходством с уже просмотренными фильмами.

Так, если вы посмотрели фильм «Матрица», система может порекомендовать другие фильмы с Киану Ривзом или в жанре научной фантастики.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/452

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA